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ABSTRACT

Accurate signal recovery from under-determined system of equations is a topic of consid-

erable interest. Compressive sensing (CS) gives an approach to find a solution to this system

when the unknown signal is sparse. Regularized modified CS (noisy) propose an approach to

find the solution to the under-determined system of equations when we are provided with 1-

Partial part of signal support denoted by T and 2- A prior estimate of signal value on this

support denoted by µT . In many applications, e.g sequential MRI reconstruction, the sparse

signal support and its nonzero signal values change slowly over time. Inspired by this fact, we

propose an algorithm utilizing reg-mod-CSN for sequential signal reconstruction such that the

prior estimate of T and µT is generated from the previous time instant.

Our major focus in this work is to study the ”stability” of the proposed algorithm for re-

cursive reconstruction of sparse signal sequences from noisy measurements. By ”stability” we

mean that the number of misses from the current support estimate; the number of extras in it;

and the `2 norm of the reconstruction error remain bounded by a time-invariant value at all

times. For achieving this goal, we need a signal model that can represent the sequential signals

in real applications. It should satisfy three constraint; 1- The distribution of the signal entries

should follow the same distribution as real sequential signals; 2- It follows the same evolutionary

pattern as the real sequential signals over time and 3-The signal support changes dynamically

over time. In the two proposed signal model, we tried to satisfy these three constraints. Using

these signal models, we analyzed the performance of the proposed algorithm and found the

condition such that the system remain stable. These conditions are weaker in compare with

older methods like CS and mod-CS. At the end, we show empirically that reg-mod-CS achieves

a lower reconstruction error in compare with mod-CS and CS.
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CHAPTER 1. Introduction

1.1 Motivation

Recovering sparse signal from under-determined system of equations is a topic of interest

in many areas. In medical applications (e.g. MRI imaging, CT imaging) fast signal recovery is

quiet important. The time that the system spends on data acquisition is inappropriate in a sense

that expose the patient with radiation for a longer time or make a poor reconstruction because

of motion artifact. There are cases that one need to scan a particular part of body over a time

sequence, e.g. sequential MRI imaging. In these cases the object may have small variations

over time. This limited variation spark the idea of using past information to reconstruct the

current time signal. If this initial information help to reconstruct the signal with lower number

of measurements, that can lead to a gain in scanning time.

1.2 Notation and problem definition

The set operations ∪, ∩, \ have their usual meanings. ∅ denotes the empty set. We use

T c to denote the complement of a set T w.r.t. [1,m] := [1, 2, . . .m], i.e. T c := [1,m] \ T . |T |

denotes the cardinality of T . For a vector, v, and a set, T , vT denotes the |T | length sub-vector

containing the elements of v corresponding to the indices in the set T . ‖v‖k denotes the `k norm

of a vector v. If just ‖v‖ is used, it refers to ‖v‖2. Similarly, for a matrix M , ‖M‖k denotes

its induced k-norm, while just ‖M‖ refers to ‖M‖2. M ′ denotes the transpose of M . For a fat

matrix A, AT denotes the sub-matrix obtained by extracting the columns of A corresponding

to the indices in T .

We obtain an n-length measurement vector yt by
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yt = Axt + wt

A is an m× n (m ≤ n) matrix that we call the measurement matrix. xt is an n length sparse

vector with support Nt, yt is the n length observation vector and wt is the m length noise

observation vector with ‖wt‖ ≤ ρ. We assume partial knowledge of support and denote it by

Tt. Also we assume partial knowledge of the signal estimate on Tt, and denote it by (µt)Tt .

The signal estimate is assumed to be zero along Tt
c.

Our goal is to recursively estimate xt using y1, ...yt. By recursively, we mean, use only yt

and the estimate from t−1, x̂t−1 to compute the estimate at time t. Recursive recovery ensures

both computational and storage complexity remains the same as that of simple CS (CS done

for each time instant separately).

The S-restricted isometry constant δS , for a matrix, A, proposed in [1], is defined as the

smallest positive number satisfying

(1− δS)‖c‖2 ≤ ‖AT c‖ ≤ (1 + δS)‖c‖2

for all subsets of T with cardinality |T | ≤ S and all real vectors c of length |T |. The S, S′

restricted orthogonality constant , θS,S′ , proposed in [1], is defined as the smallest real number

satisfying

〈AT1c1, AT2c2〉 ≤ θS,S′‖c1‖‖c2‖

for all disjoints sets T1,T2 with |T1| ≤ S, |T2| ≤ S′ and S + S′ ≤ m, and for all vectors c1,c2 of

length |T1|,|T2| respectively.

Definition 1 (Tt, ∆t, ∆e,t). We use Tt to denote the support estimate at time t from the

previous time t− 1. We use ∆t := Nt \ Tt to denote the unknown part of the support estimate

and ∆e,t := Tt \Nt to denote the “erroneous” part of Tt.

Definition 2 (T̃t, ∆̃t, ∆̃e,t). We use T̃t to denote the final support estimate at current time t.

We use ∆̃t := Nt \ T̃t and ∆̃e,t := T̃t \Nt .

1.3 Past works and our contribution

The problem of recovering unknown signal form under-determined system of equations has

attained a lot of attention in recent years. Compressive sensing(CS) is a novel approach which
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direct this problem for sparse or compressible signals( [1], [2], [3], [4]). We obtain an n-length

measurement vector y by

y = Ax+ w

A is an m × n (m ≤ n) matrix that we call the measurement matrix. x is an n length sparse

vector, y is the m length observation vector and w is the m length noise vector such that

‖w‖ ≤ ρ.

One approach for sparse signal reconstruction is to consider all possible signals that satisfy

certain level of sparsity and searching the true signal among all of these candidates. In other

word, we are looking for the sparsest solution such that satisfy the data constraint

min ‖β‖0 s.t ‖y −Aβ‖ ≤ ρ

This problem gives the true solution if δ|N | < 1 which N represents the support set of signal x

and |N | denotes the cardinality of this set. Actually this problem is NP-hard and interactive.

In [5] for the noiseless case, it was shown that under certain conditions, this problem can be

solved via convex relaxation. Compressive sensing attempts to reconstruct sparse signal x, by

solving

min ‖β‖1 s.t ‖y −Aβ‖ ≤ ρ

the succession of the optimization problem depends on matrix A and sparsity level of signal

x. More precisely, in the noiseless case, this problem gives the exact solution if δT <
√

2−1
2 .

For the noisy case, an error bound was proposed in [6], which gives the reconstruction error

proportional to ρ.

There are many algorithms proposed for solving these two optimization problems ( [7], [8],

[9], [10], [4], [11]). Classical CS assume that we are not provided with any prior information

about the signal value and signal support. But in some cases, the observer has been provided

with some information about the signal. There are many works that tried to employ this prior

information ( [12], [13], [14], [15]). Suppose that we are provided with partial part of the signal

support T ⊂ N where N is the signal support. Modified-CS(mod-CS) [16] tries to find a signal

that is sparsest outside of T and satisfies the data constraint. It tries to reconstruct signal x,
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by solving

min ‖βT c‖1 s.t ‖y −Aβ‖ ≤ ρ

Mod-CS shows that sparse signal, x, is recoverable under much weaker conditions in compare

with CS. More precisely, for the noiseless case, it gives the exact solution if δ|T |+2|∆| <
√

2−1
2 .

In addition to the partial knowledge of support, it is possible that we have been provided with

an initial guess of the signal value on this support, µT , such that ‖xT − µT ‖ ≤ γ where γ is an

scalar.

In this work [17], we first propose two convex optimization problem, reg-mod-CSN and

reg-mod-BPDN, to use these extra information for signal recovery. Regularized modified

CS(noisy)(reg-mod-CSN) is the noisy relaxation of regularized modified CS (reg-mod-cs) pro-

posed in [16]. Reg-mod-CSN and reg-mod-BPDN try to find a signal that is sparsest outside

of T ; is ”close” enough to µT on T ; and satisfies the data constraint.

There are many examples in sequential signals that both the sparse signal’s support and

its nonzero signal values change slowly over time. This assumption has been empirically veri-

fied in earlier work [16] for medical image sequences. Using this characteristic, we propose an

algorithm that utilize reg-mod-csn for sparse reconstruction over time. At each time instant,

it gives an initial guess about the current time signal support and value by using the recon-

structed signal form the previous time.

Other algorithms for recursive reconstruction include our older work on Least Squares CS-

residual (LS-CS) and Kalman filtered CS-residual (KF-CS) [18–20]; modified-CS [16]; homotopy

methods [21] (use past reconstructions to speed up current optimization but not to improve

reconstruction error with fewer measurements); and [22] (a recent modification of KF-CS).

Another recent work on CS for time-varying signals [23] proposed a series of causal but batch

approaches that assume a time-invariant support.

Two other algorithms that are also designed for static CS with partial knowledge of support

include [24] and [25]. The work of [24] proposed an approach similar to modified-CS but did

not analyze it and also did not show real experiments either. The work of [25], which appeared

in parallel with modified-CS, assumed a probabilistic prior on the support.

The proposed recursive algorithm estimate xt using yt and the estimate from t− 1, x̂t−1 to
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compute the estimate at time t. So the current reconstruction error depends on how well the

previous time signal was estimated. In the other word, we like the reconstruction error to remain

bounded by a time independent. Otherwise, the initial guess may mislead the reconstruction

process in a way that the solution goes far from the true signal. In this work, we study

the ”stability” of Regularized modified CS(noisy) for recursive reconstruction of sparse signal

sequences from noisy measurements. By ”stability” we mean that the number of misses from

the current support estimate; the number of extras in it; and the `2 norm of the reconstruction

error remain bounded by a time-invariant value at all times. The concept is meaningful only

if the support error bounds are small compared to the signal support size.

To the best of our knowledge, stability of recursive sparse reconstruction algorithms has

not been studied in any other work except in older works [20, 26] for LS-CS and modified-CS

respectively. The limitation of the result of [20] was that it assumed a signal model where

support changes are only allowed every-so-often. But this assumption often does not hold in

practice, e.g. for dynamic MRI sequences, support changes occur at every time. This limitation

was removed in [26] where we used a signal model that allows support changes at every time t.

In this work, first we use the same signal model to get the stability results.

The signal model in [26] generate a signal which it’s energy at each time instant depends

on the evolution of the signal over time. In this work, we propose another signal model that

separate the distribution of signal vectors entries at each time instant from the evolution of the

entries over time. Under this new signal model, we also find the conditions which the system

remain stable. Our overall approach is also motivated by that of [26] for modified-CS. But

there are significant differences since for reg-mod-CSN, the current reconstruction also depends

on the previously reconstructed signal values (not just its support estimate), which makes its

stability analysis more difficult.

1.4 Thesis Organization

In chapter 2, we introduce reg-mod-CSN and reg-mod-BPDN which are two optimization

problems for recovering the unknown signal. In chapter 3, we propose two signal models.

These models include the distribution of the signal vector values at each time instant and its
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evolution over time. In chapter 4, an algorithm is introduced for applying reg-mod-CSN over

a time sequence. Furthermore, the stability of the algorithm output is analyzed. At the end,

conclusion is brought in chapter 5.
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CHAPTER 2. Sparse Signal Recovery from Noisy Measurements with

Partial Knowledge of Signal Support and Value

In this chapter we propose two optimization problem, reg-mod-CSN and reg-mod-BPDN,

for signal recovery via noisy measurements with partial knowledge of signal support. The

conditions where these convex problems have unique solution have been obtained. It also gives

the l2 reconstruction error for these two method which are mostly based on the same procedure

in [27] and [5].

2.1 Regularized Modified CSN

In this section, we introduce regularized Modified CSN and derive the bound for its recon-

struction error. We consider the case where there is one measurement vector, y, and a signal

vector x.

y := Ax+ w, where ‖w‖ ≤ ε

Let N denote the support of x, i.e N := {i : |xi| > β} where β ∈ R. Assume that we know

partial part of support denoted by T . We define ∆ = N\T . In addition to the measurements

and partial knowledge of signal support, T , we know that signal x satisfies

‖xT − µT ‖2 ≤ γ

where µT is the partial knowledge of the signal estimate on T . Regularized Modified CSN

solves the following problem.

min ‖βT c‖1 s.t ‖y −Aβ‖2 ≤ ε and ‖βT − µT ‖2 ≤ γ (2.1)

The following theorem gives the sufficient conditions where reg-mod-csn have a unique solution

and an reconstruction error bound for this solution



www.manaraa.com

8

Theorem 1. Let u := |T | and k := |∆|. Assume that δu < 1, 1 − δ2k − θk,2k > 0 and

‖xT − µT ‖ ≤ γ. Then the solution x̂ to (2.1) obeys

‖x− x̂‖ ≤ Cu,kε+Du,kγ + Eu,ke0(T,∆) (2.2)

where

Cu,k = 2

√
1 + δu

1− δu
+ 2

(2 +
(
√

2+1)θu,k
1−δu )

√
1 + δ2k

1− δ2k − θk,2k

Du,k =
2(2 +

(
√

2+1)θu,k
1−δu )θu,2k

1− δ2k − θk,2k

Eu,k =
θk,2k

1− δ2k − θk,2k
(2 +

(
√

2 + 1)θu,k
1− δu

) + 2(1 +
θu,k

1− δu
)

e0(T,∆) = 2
‖x(T∪∆)c‖1√

|k|

Proof : Proof is given in Appendix .

2.2 Regularized Modified-BPDN

In this section we introduce the regularized Modified CSDN and derive the bound for it’s

reconstruction error. like the previous section, we consider the case where there is one set of

measurements y and a signal vector x.

y := Ax+ w, where ‖w‖ ≤ ε

Let N denote the support of x, i.e N := {i : xi > 0}. Assume that we know partial part of

support denoted by T . We define ∆ := N\T . Also we assume partial knowledge of the signal

estimate on T , and denote it by µ̂T .

Regularized modified-BPDN solves the following problem.

min
b

1

2
‖y −Ab‖22 +

1

2
λ‖bT − µ̂T ‖22 + γ‖bT c‖1 (2.3)

In the following definition, we first define some variables that will be used repeatedly through

the thesis.
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Definition 3. Let

QT (S) = (A′T∪SAT∪S + λ

 IT 0T,S

0S,T 0S,S

) (2.4)

cT (S) = QT (S)−1(A′T∪Sy + λµ̂T∪S) (2.5)

ERC(T, S, λ) = (1− max
i/∈T∪S

‖(A′SMAS)−1A′SMAi‖1) (2.6)

MT,λ , I −AT (AT
′AT + λI|T |)

−1AT
′ (2.7)

Notice that for simplification, through the rest of report we use Q(S), c(S), ERC(T, S), M

instead of QT (S), cT (S), ERC(T, S, λ), MT,λ. In the following lemma we bring the conditions

under-which the problem (2.3) has a unique solution and we calculate the l2 distance of this

solution from the true signal.

Theorem 2. Let u = |T | and k = |∆|. If A∆ has full rank, and :

1. ERC(u, k, λ) > 0

2. γ ≥ ‖(y−Ac(∆))‖2
ERC(u,k,λ)

Then

1. The function in (2.3) has a unique minimizer x̂.

2. The error can be bounded by the following formula

‖x− x̂‖2 ≤ γ
√
k
√
‖(A′TAT + λIT )−1A′TA∆‖2 + 1‖(A′∆MA∆)−1‖+ ‖λQ(∆)−1(xT∪∆ − µ̂T∪∆)‖+ ‖Q(∆)−1A′T∪∆w‖(2.8)

Proof : The proof has given in Appendix.

In the next lemma we rewrite the condition 1 and 2 of lemma 2 in terms of RIP and ROP

constants. We do the same thing for (2.8).
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Lemma 1. If A∆ has full rank, and

1. λ ≥ max(0, g1(u, k), g2(u, k))

2. min(1− δk − θu,k, 1− δk −
√
kθk,1) ≥ 0

3. γ ≥ H2(u, k, λ, ‖xT∪∆ − µ̂T∪∆‖)

then

1. The function in (2.3) has a unique minimizer x̂

2. ‖x− x̂‖2 ≤ γf1 + f2‖xT∪∆ − µ̂T∪∆‖+ f3‖w‖

where

g1(u, k) = δu − 1 +
θ2
u,k

1− δk − θu,k

g2(u, k) = −1 + δu +
θ2
u,k +

√
kθu,kθu,1

1− δk −
√
kθk,1

H2(u, k) =
λ

θ(u+k,1)

min(1−δu+λ,1−δk)−θu,k)‖xT∪∆ − µ̂T∪∆‖+ (1 +
θu+k,1(

√
1+δu+k)

min(1−δu+λ,1−δk)−θu,k )ε

1−
√
k
θk,1+

θu,kθu,1
1−δu+λ

)

1−δk−
θ2
u,k

(1−δu+λ)

and fi ≡ fi(u, k, λ) i = 1, 2, 3

f1(u, k, λ) =
√
k

√
θ2
u,k

(1− δu + λ)2
+ 1 · 1

1− δk −
θ2
u,k

1−δu+λ

(2.9)

f2(u, k, λ) =
λ

min(1− δu + λ, 1− δk)− θu,k
(2.10)

f3(u, k, λ) =

√
1 + δu+k

min(1− δu + λ, 1− δk)− θu,k
(2.11)
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CHAPTER 3. Signal Models for Sparse and Compressible Sequential

Signals

In this chapter, we bring two signal models that we will use for analysing our sequential

algorithm in next chapter. Signal model I and signal model II have been defined in section 3.1

and 3.2. At section 3.3, we compare the advantage and artifacts of the both signal models.

3.1 Signal Model I

The proposed algorithm does not assume any signal model. But to prove its stability, we

need certain assumptions on the signal changes over time. We use the Signal Model introduced

in [26] as our signal sequence over time.

Assume the following

1. (addition) At each t > 0, Sa new coefficients get added to the support at magnitude r.

Denote this set by At.

2. (increase) At each t > 0, the magnitude of Sa coefficients which had magnitude (j − 1)r

at t − 1 increases to jr. This occurs for all 2 ≤ j ≤ d. Thus the maximum magnitude

reached by any coefficient is M := dr.

3. (decrease) At each t > 0, the magnitude of Sa coefficients which had magnitude (j + 1)r

at t− 1 decreases to jr. This occurs for all 1 ≤ j ≤ (d− 1).

4. (removal) At each t > 0, Sa coefficients which had magnitude r at t−1 get removed from

the support (magnitude becomes zero). Denote this set by Rt.

5. (initial time) At t = 0, the support size is S0 and it contains 2Sa elements each with

magnitude r, 2r, . . . (d− 1)r, and (S0 − (2d− 2)Sa) elements with magnitude M .
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Notice that, in the above model, the size and composition of the support at any t is the

same as that at t = 0. Also, at each t, there are Sa new additions and Sa removals. The new

coefficient magnitudes increase gradually at rate r and do not increase beyond a maximum

value M := dr. Similarly for decrease. The support size is always S0 and the signal power is

(S0 − (2d − 2)Sa)M
2 + 2Sa

∑d−1
j=1 j

2r2. To understand the implications of the assumptions in

Signal Model , we define the following sets.

Definition 4. Let

1. Dt(j) := {i : |xt,i| = jr, |xt−1,i| = (j+ 1)r} denote the set of elements that decrease from

(j + 1)r to jr at time, t,

2. It(j) := {i : |xt,i| = jr, |xt−1,i| = (j − 1)r} denote the set of elements that increase from

(j − 1)r to jr at time, t,

3. St(j) := {i : 0 < |xt,i| < jr} denote the set of small but nonzero elements, with smallness

threshold jr.

4. Clearly,

(a) the newly added set, At := It(1), and the newly removed set, Rt := Dt(0).

(b) |It(j)| = Sa, |Dt(j)| = Sa and |St(j)| = 2(j − 1)Sa for all j.

Consider a 1 < j ≤ d. From the signal model, it is clear that at any time, t, Sa elements

enter the small elements’ set, St(j), from the bottom (set At) and Sa enter from the top (set

Dt(j − 1)). Similarly Sa elements leave St(j) from the bottom (set Rt) and Sa from the top

(set It(j)). Thus,

St(j) = St−1(j) ∪ (At ∪Dt(j − 1)) \ (Rt ∪ It(j)) (3.1)

Since the sets At, Rt, Dt(j − 1), It(j) are mutually disjoint, and since Rt ⊆ St−1(j) and It(j) ⊆

St−1(j), thus,

St−1(j) ∪At \Rt = St(j) ∪ It(j) \Dt(j − 1) (3.2)
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3.2 Signal Model II

Inspired by [28], we propose a signal model in this part which basically relies on this fact that

in some application, e.g. MRI imaging, the signal vector entries will have limited variations.

We define k disjoint sets, Λ1 ... Λk ⊂ [1..n] such that Λ1 ∪ Λ2 ∪ ...Λk = [1..n]. Let’s define

t0...tk ∈ R such that t0 = 0 < t1 < .... < tk and c ∈ R. We establish µ ∈ Rn as following

µi ∼ P1 × U(
tj−1

1− c
,
tj

1 + c
) i ∈ Λj

Where 0 ≤ j ≤ k and P1 and U denote 1− 2×Bernoulli(1
2) and Uniform distribution.

At time t=0, we set x0 = µ. We build the signal, x ∈ Rn, as follow

(xi)t = (xi)t−1 + P2 × S1 × S2 ×
c

s
µi + P3 × S3

c

s
µi

where S1 = sgn(µi)sgn((xi)t−1−µi) , S2 = sgn(1−sgn(| csµi|−|(xi)t−1−µi|)), S3 = sgn(| csµi|−

|(xi)t−1 − µi|) and P2, P3 are random variables that return an integer form the sets {0, 1} and

{−1, 0, 1} with the same probability.

Notice that S2 and S3 are two functions which return 0 and 1 if (xi)t−1 = µi± c
sµi, respectively,

otherwise they return 1 and 0.

3.2.1 Discussion of Signal Model

In this part, we focus on MRI Images and see how well the signal model can represent the

MRI image signals. As an example, we take a sequence of MRI images of the cardiac system

over 20 consecutive times. In Part (a) of Figure 1, the sorted form of the MRI coefficients in

wavelet domain has been plotted.

If we look at the sorted values of coefficients we can see that these coefficients can be split

in five categories based on their values that are independent of the time.

• A low fraction of large coefficients which constitute more than 0.90 of signal energy. In

this case these are less than 0.001 of the whole number of coefficients.

• A fraction of middle range values which constitute more than 0.094 of signal energy. In

this case there are less than 0.015 of the coefficients.
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• A fraction of coefficients that have lower values and constitute more than .048 of signal

energy. In this case these are less than 0.22 of the whole number of coefficients.

• A fraction of coefficients that have lower values and constitute about .001 of signal energy.

In this case these are less than 0.01 of the whole number of coefficients.

• A large fraction of coefficients that have values near zero and constitute less than 0.001 of

signal energy. In this case these are more than 0.77 of the whole number of coefficients.

If we track the changes of coefficients over time, we observe that the deviations are bounded

by time independent values. This deviation is dependent on the value of the coefficient, e.g.

larger coefficients have larger variations and vice versa. In the proposed signal model, we have

considered this characterization and have bounded the variation of each coefficient. We use

parameter c to do that. Therefore, for t 6= t′, it gives |(xi)t − (xi)t′ | ≤ 2c|µi|.

Based on these observations we choose k = 5 in the signal model and set |Λ1| = 751,

|Λ2| = 40, |Λ3| = 210, |Λ4| = 15, |Λ5| = 8 .

We set t1 = 8, t2 = 22, t3 = 100, t4 = 300 and t5 = 1400 which define the range where the

coefficients can change in each set.

In part (b) of Figure 1, we have plotted the sorted values of the sample signal which has

been generated by the proposed signal model. Notice that by these values the real signal

and proposed signal model energy are about 5.5 × 106. Moreover, the generated signal follow

close energy pattern of the MRI signals which was mentioned earlier. This is important in

compressive sensing since the support size can be assumed as the lowest number of coefficients

which accumulate a certain amount of energy.

Another fact which is important in the modeling is the variation of signal values over time.

The parameter s control this variation in a way that for i ∈ [1..n], we have |(xi)t − (xi)t−1| =

c/s|µi|. By setting s = 20, we would have about 0.03 variation in signal energy over consecutive

times which is the same as the samples MRI sequence. Figure 1 shows the sorted coefficients

of the generated signal. As it can be seen, the proposed signal model gives a closed model of

MRI signal.
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(a)

(b)

Figure 3.1 (a) Sorted MRI signal coefficient values in Wavelet domain (b) Sorted proposed
signal model coefficient values in Wavelet domain

3.3 Comparison of signal model I and II

In sequential signal modeling, we are interested in a signal model which satisfy three char-

acteristics

• It has the capability such that the support set changes dynamically over time.

• At each time instant, it generates a signal which its entries distribution follow the same

distribution as the real signals.
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• It contains the mechanism that the signal entries evolve over time.

The signal model I has been designed in a way that it gives the first and third conditions. There

we saw that the signal entries are just limited to some certain steps that the distance between

the consecutive levels, define the signal changes over time. So in this case, the evolution of

signal over time is dependent on the signal energy at each time instant and it is not something

that happens in applications.

The signal model II is successful with the last two items but the signal support does not

change properly dynamically over time. This is actually true in MRI reconstruction but may

not hold in some applications like video surveillance.

More precisely, if we want to have a signal which have the same energy over time, it should

lie on the l2 ball. Each signal vector is associated with one point on this ball and for the case

where we are limited to certain distributions, these points will be on different parts of balls and

have different distances. In other word, the evolution of the signal over time is not independent

of the distribution of the signal at each time instant. So it is hard that a signal model satisfy

all three items and we usually have a trade-off between those.
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CHAPTER 4. Algorithm for Sequential Reg-mod-CSN and Stability

Results

In this chapter, we bring algorithm which utilize reg-mod-csn and reg-mod-bpdn over time.

Furthermore, we will analyze the performance of the two algorithms over time and obtain the

conditions under which the reconstruction error is bounded by a time invariant value.

4.1 Algorithm for Sequential Regularized Modified CSN over time

Regularized Modified CSN was introduced in the previous section as the solution to the

problem of (2.1). In other word, Regularized Modified CSN is the solution to the problem

of sparse reconstruction (2.2) with partial knowledge of the support and signal value on the

known support. For recursively reconstruction a time sequence of sparse signals, we use the

support estimate from the previous time, T̃t−1 as the set T and use the signal estimate from

the previous time on this support, (x̂t−1)T as the µT . At the initial time, t = 0,we let T be

the empty set, i.e we do simple CS. Therefore at t = 0 we need more measurements, m0 > m.

Denote the m0 × n measurement matrix used at t = 0 by A0.

We summarize the Regularized modified CSN algorithm in Algorithm 1. Here α denote the

support estimation threshold. Consider that in step 3 of algorithm we update our support

estimation as T̃t at time t .

4.2 Stability Results with Signal Model I

In this part we are finding the conditions under which the error bound for proposed algo-

rithm remains bounded. For this purpose, we should develop the conditions for a certain set

of large coefficients to definitely get detected and the elements of ∆e to definitely get deleted.
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Algorithm 1 Regularized Modified CSN over time

For t ≥ 0, do

1. Simple CS. If t = 0, set T0 = ∅ and compute x̂0 as the solution of

min ‖β‖1 s.t ‖y0 −A0β‖2 ≤ ε (4.1)

2. Regularized Modified CSN. If t > 0, set Tt = T̃t−1 and compute x̂t as the solution of

min ‖βTtc‖1 s.t ‖y −Aβ‖2 ≤ ε and ‖βTt − µTt‖2 ≤ γ (4.2)

3. Estimate the Support. Compute T̃t as

T̃t = {i ∈ [1,m] : |(x̂t)i| > α} (4.3)

4. Set µ = x̂t. Output x̂t. Feedback µ and T̃t.

In the following lemma we bring some simple facts that we use through the proof of Theorem

4.

Proposition 1. In the third step of Algorithm 1 we have the following facts

1. An i ∈ Nt will definitely get detected if |xi| > α+‖xt− x̂t‖. This follows since ‖xt− x̂t‖ ≥

‖xt − x̂t‖∞ ≥ |xt − x̂t|i

2. Similarly, all i ∈ ∆̃e,t (the zero elements of T̃t) will definitely not get detected if α ≥

‖xt− x̂t‖. This is true since if (xt)i = 0 and (x̂t)i get detected as nonzero value (x̂t)i, then

α ≤ ‖(x̂t)i−(xt)i‖ ≤ ‖xt−x̂t‖ which is a contradiction with the assumption α ≥ ‖xt−x̂t‖.

Proposition 2. Under proposed Signal Model we have

‖(xt)Tt − (x̂t−1)Tt‖2 ≤ ‖xt−1 − x̂t−1‖2 +
√

2dSar

Proof : Proof is straightforward form the fact that by Signal Model we have ‖xt−xt−1‖2 ≤
√

2dSar.

In the following theorem we bring the conditions that makes the error bounded by a time

independent value.
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Theorem 3 (Stability of Regularized Modified CSN over time). Assume the Signal Model

given above. For a d0 such that 1 ≤ d0 ≤ d, set S1 = (2d0 − 2)Sa. If the following conditions

hold

1. min(1− δS0 , 1− δ2S1 − θS1,2S1 − 2(2 +
(
√

2+1)θS0,S1
1−δS0

)θS0,2S1) > 0

2. γ =
CS0,S1

ε+
√

2dSar

1−DS0,S1

3. α = CS0,S1ε+DS0,S1γ

4. r satisfy

r ≥
2CS0,S1ε

d0(1−DS0,S1)− 2DS0,S1

√
2dSa

(it ensures that d0r ≥ 2× (CS0,S1ε+DS0,S1γ))

5. n0 is large enough so that

‖ x0 − x̂0 ‖≤ CS0,S1ε+DS0,S1γ

Then we can conclude that

1. |Tt| ≤ S0 , |∆t| ≤ S1

2. ‖xt − x̂t‖ ≤ CS0,S1ε+DS0,S1γ

Proof : Our approach for the proof is based on induction. Assume that the results hold at

t− 1. Using condition 2 and Proposition 2, we can show that ‖xt − x̂t−1‖ ≤ γ. Condition 2 is

meaningful when DS0,S1 < 1 which is equivalent to the second term of condition 1.

Next, we try to show that |Tt| ≤ S0 and |∆t| ≤ S1. Finally, this, along with conditions 1 and 2

allows us to apply Theorem 1 to get the bound on ‖xt−x̂t−1‖. To show |Tt| ≤ S0 and |∆t| ≤ S1,

we first use the induction assumption, conditions 3 and 4 and Proposition 1 to bound |T̃t−1|

and |∆̃t−1|; and then use the signal model to bound |Tt| and |∆t|. The complete proof is given

in the Appendix.

4.2.1 Discussion of Theorem

We can observe some results from Theorem 2. As we can see in the first condition of

Theorem 2, reg-mod-CSN needs two requirements to hold, δS0 < 1 and 1−δ2S1−θS1,2S1−α > 0
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where α = 2(2 +
(
√

2+1)θS0,S1
1−δS0

)θS0,2S1 . Consider the case where δS0 = 3
4 and θS0,2S1 = 1

8 then

it can be concluded that α = 7
8 . So the second requirement of condition 1 is simplified to

δ2S1 + θS1,2S1 ≤ 1
8 . Since in practise S1 is small in compare with S0, we can see that the

condition δ2S1 + θS1,2S1 ≤ 1
8 will be satisfied easily.

We showed that if δS0 = 3
4 and θS0,2S1 = 1

8 then Theorem 2. Comparing these with the

results for modified-cs [26],δS0+S1 ≤
√

2−1
2 , we observe that reg-mod-CSN remain stable under

weaker conditions.

Also recall that CS results [5] needs δ2S0 ≤
√

2− 1 that is an stronger condition in compare

with δS0 = 3
4 which we obtained for reg-mod-CSN.

4.2.2 Simulation Result

We compared regularized modified CSN, modified BPDN [29], modified CS [30] and simple

CS for different values of S0
m . In Figure 1 we used Signal Model with m = 100, n = 50,

S0 = 20, 30, 40, Sa = 1, r = 1
6 and wt ∼iid uniform(−c, c) with c = .05. γ1 is the value of γ

in minimization problem (2.1) regularized modified CSN and γ2 is the value of γ for problem

(2) in [29] for modified BPDN respectively. The measurement matrix was random Gaussian.

The simulation results have been obtained by averaging over 100 samples. We set the α to

some value in the noise level(α = .1). By this value it gives a fairly accurate estimate of

nonzero elements with a low number of falsely detections. In Figure 1 we showed a set of

plots. Normalized MSE (NMSE), average number of extras( mean of the |Tt \Nt| over the 100

simulations) and average number of misses (mean of |Nt \ Tt|) are plotted in parts (b) and (c).

Since in (b) and (c) the error was over 0.2 for CS, we just showed CS in (a). As it can be seen

in (a) (S0
m = .2) reg-mod-CSN ,mod-BPDN and mod-CS are stable and works almost the same

(the errors are under 0.02) while the CS has a large error. In (b) as S0
m is increased (S0

m = .3)

modified BPDN and modified CS starts to become unstable( The NMSE is increased gradually

over time) while reg mod CSN is still stable( The NMSE remains under 0.02 over time). In the

case where S0
m = .4 all three methods become unstable.
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(a) n = 50,m = 100, S0 = 20, γ1 = .4, γ2 = .3

(b)n = 50,m = 100, S0 = 30, γ1 = .4, γ2 = .3

(c)n = 50,m = 100, S0 = 40, γ1 = .4, γ2 = .3

Figure 4.1 Normalized MSE (NMSE), number of extras and number of misses over time for
CS, modified CS, modified BPDN, and regularized modified CSN. In part (b) and
(c), NMSE for CS was more than 20%.(plotted only in (a)

4.3 Stability Results with Signal Model II

Theorem 4 (Stability of Regularized Modified CSN over time). Assume the Signal Model

given above. IF there exists 1 ≤ k0 ≤ k such that S0 = n − |Λ1| − ... − |Λk0−1|, S1 = |Λk0 |and

the following conditions hold

1. min(1− δS0 , 1− δ2S1 − θS1,2S1

− 2(2 +
(
√

2+1)θS0,S1
1−δS0

)θS0,2S1) > 0

2. γ =
CS0,S1

ε

1−DS0,S1
+

√
c
s
DS0,S1

‖µ(Λ1∪..∪Λk0−1)c‖2
1−DS0,S1



www.manaraa.com

22

+
2ES0,S1

1−DS0,S1

tk0−1|Λk0−1|+...+t1|Λ1|
|Λk0
|

3. α =
tk0

+tk0−1

2

4. γ ≤ tk0
−tk0−1

2

5. n0 is large enough so that

‖ x0 − x̂0 ‖≤ CS0,S1ε+DS0,S1γ

+ 2ES0,S1

tk0−1|Λk0−1|+...+t1|Λ1|
|Λk0
|

Then we can conclude that

1. |Tt| ≤ S0 , |∆t| ≤ S1

2. ‖xt − x̂t‖ ≤ CS0,S1ε+DS0,S1γ

+ 2ES0,S1

tk0−1|Λk0−1|+...+t1|Λ1|
|Λk0
|

Proof : Our approach for the proof is based on induction. The condition 5 of the Theorem

2 gives the base case. For the induction step, assume that the results hold at t − 1. By the

third step of Algorithm 1, we know that

Tt = T̃t−1 = {i ∈ [1,m] : |(x̂t−1)i| > α}

We define ∆t = Nt\Tt where

Nt = {i ∈ [1,m] : |(xt−1)i| > tk0−1}

Note that based on signal model Nt = N where N = Λk0 ∪ .... ∪ Λk. By the choice of α in

the Theorem 2 and the Proposition 1, we can conclude that

Λk0+1 ∪ ... ∪ Λk ⊂ Tt ⊂ Λk0 ∪ ... ∪ Λk

This suffice to conclude that |Tt| ≤ S0, |∆t| ≤ S1. It remains to show the second conclusion of

the Theorem 2. For that, we use inequality (2.2). By the already obtained bound for |Tt| and

|∆t|, we set u = S0 and k = S1 and µ = x̂t−1. The only thing that remains is to show that

‖(xt)Tt − (x̂t)Tt−1‖ ≤ γ. Notice that

‖(xt)Tt − (x̂t)Tt−1‖ ≤ ‖(xt)Tt − (xt−1)Tt‖+ ‖xt−1 − x̂t−1‖ (4.4)
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By using ‖(xt)Tt − (xt−1)Tt‖ ≤
√

c
sµ(Λ1∪....∪Λk0−1)c and using the assumption of the induction

for bounding ‖xt−1 − x̂t−1‖ and employing the condition 2 of the Theorem 2, we can conclude

that the right side of (4.4) is less than or equal to γ.

4.3.1 Discussion of Theorem

We can observe some results from Theorem 2. As we can see in the first condition of

Theorem 2, reg-mod-CSN needs two requirements to hold, δS0 < 1 and 1−δ2S1−θS1,2S1−α > 0

where α = 2(2 +
(
√

2+1)θS0,S1
1−δS0

)θS0,2S1 . Consider the case where δS0 = 3
4 and θS0,2S1 = 1

8 then

it can be concluded that α = 7
8 . So the second requirement of condition 1 is simplified to

δ2S1 + θS1,2S1 ≤ 1
8 . Since in practice S1 is small in compare with S0, we can see that the

condition δ2S1 + θS1,2S1 ≤ 1
8 will be satisfied easily.

We showed that if δS0 = 3
4 and θS0,2S1 = 1

8 then Theorem 2. Comparing these with the

results for modified-cs [26],δS0+S1 ≤
√

2−1
2 , we observe that reg-mod-CSN remain stable under

weaker conditions.

Also recall that CS results [5] needs δ2S0 ≤
√

2− 1 that is an stronger condition in compare

with δS0 = 3
4 which we obtained for reg-mod-CSN.

4.3.2 Simulation Result

In this section we compare the reconstruction error of regularized modified CSN, modified

CS [16] and simple CS. The comparison has been made for different values of m.

MRI system generate the 2D Fourier of the object as measurements

Y = FOF ′ (4.5)

where O represents the object, Y represents measurement matrix and F is the 2D Fourier

matrix.

Moreover, object O shows high sparsity in wavelet domain so we pick the wavelet domain as

our focusing domain

X = WOW ′ (4.6)
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where W denotes 2D wavelet matrix. Using this, we can rewrite (4.5) as

Y = FWXW ′F ′ (4.7)

By stacking Y and X into vectors y and x and setting A = (F
⊗
F ′)(W

⊗
W ′) we would have

y = Ax

which is the 1D version of the equation (4.7).

We used the proposed signal model with the same values of parameters as section 3.2.1 and

different values of m. we set k0 = 2. We chose the support as Nt = {i ∈ [1,m] : |(xt−1)i| > 16}

which on average contains more than 99% of energy.

We run the algorithm for three different values of m=400,500,600. The parameter α is cho-

sen based on the number of measurements. Notice that based on Theorem , the error bound

depends on ε, γ, |T | and the signal residual x(T∪∆)c . This gives a key for choosing α. Notice

that for low values of α, we may count a lot of entries that leads to a large value of |T | and

lower value for x(T∪∆)c . Notice that large |T | makes the RIP constants get larger values and

consequently larger errors. So basically the choice of α is a tradeoff between |T | and x(T∪∆)c .

We are not interested to count the small value entries as the support, —T—, since x(T∪∆)c

gets low values for these entries. As we in increase the number of measurements, we would

have larger values for RIP constants that increase the error bound. By the results of the ex-

periments, it is suggested that ones pick a larger α. Notice that |T | is updated based on the

reconstruction error from the previous time. Lower measurements means higher error, in other

words, the previous time reconstruction are less reliable and by choosing low value for α, we

may detects so many extra coefficients that actually does not contribute much to the signal

energy. This can be amplified over time and result in an unstable system(large error). Based

on the experiments, it is suggested that we chose larger values for α as m decrease.

For regularized modified CSN, α is set to 35, 35, 30 for m = 400, 500, 600 and for modified

CS, α is set to 50, 50, 40 accordingly.

Noise is generated as wt ∼iid uniform(−5, 5). Condition 2 of the Theorem 2 gives us an

approximation of how to choose γ. Notice that large γ may gives and worthless constraint
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that turn the problem to the modified CS. From the other side, low values of γ may give an

constraint that does not hold in reality and doesn’t let the algorithm to decide based on the

measurements. Through our experiments we choose γ = 20.

In Figure 2, Normalized MSE (NMSE), average number of extras( mean of the |Tt \ Nt|

over the 5 simulations) and average number of misses (mean of |Nt \ Tt|) are plotted in parts

(a), (b) and (c).

The simulation results have been obtained by averaging over 50 samples. As it can be seen

in (c) (m = 600) reg-mod-CSN and mod-CS are stable and the errors are less that 0.01 while

the CS has a large error. In (b) as m is decreased (m = 400) all three methods get larger error

while reg-mod-CSN works the best followed by mod-CS and CS. In the case where m = 300 all

three methods all three methods get large errors and have close performance.
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(a)

(b)

(c)

Figure 4.2 Normalized MSE (NMSE), number of extras and number of misses over time for
CS, modified CS, modified BPDN, and regularized modified CSN generated signal
by signal model. In part (b) and (c), NMSE for CS was more than 20%.(plotted
only in (a)
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CHAPTER 5. Summary and Future Work

In this work, we focused on the problem of sparse reconstruction via partial knowledge of

support and an erroneous signal value estimate on this support. We proposed two optimization

problem (reg-mod-CSN and reg-mod-BPDN) which is based on the l1 minimization proposed

in Compressive Sensing. We found the conditions which these two problems give an unique

solution and we found the error bound for each. We particulary proposed an algorithm using

reg-mod-CSN in sequential reconstruction in a way that the initial support and signal value

estimate is provided by the previous time estimate. Considering the stability of this algorithm,

we brought two signal models which represent the sequential signals over time. We developed

conditions which the system remain stable with these two signal models. we also discussed the

weak and strong point of the signal model and its impact on stability results. We also run

the algorithm with some random sample to test the efficiency of our method In the simulation

part, it was shown that using this algorithm leads to lower error bound with lower number of

measurements in compare with the former methods, e.g. mod-CS and CS.
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APPENDIX A. APPENDIX

A.1 Proof of Theorem 1

Here we consider the general case where the signal is not sparse. Let V = [1...m]. Assume

that we know partial part of support denoted by T . We redefine set N such that T ⊂ N ⊂ V .

To prove the Theorem, first let us get the following relation by using the fact that both x and

x̂ are feasible

‖A(x̂− x)‖2 ≤ ‖Ax̂− y‖2 + ‖y −Ax‖2 ≤ 2ε (A.1)

Basically our approach is a modification of the proof [5]. Let us write x̂ = x+ h. Our aim

in the rest of the proof is to make an upper bound for ‖h‖2. We decompose the vector h into

a sum of vectors. We define ∆0 = N \ T and ∆j for j ≥ 1 as the the support of k largest

coefficient of hScj with Sj = T ∪
⋃j−1
l=0 ∆l. The plan of the proof is to bound ‖hT ‖2, ‖h∆0∪∆1‖2

and ‖h(T∪∆0∪∆1)c‖2 .

Using the triangular inequality, we have ‖h(T∪∆0∪∆1)c‖2 ≤ Σj=2‖h∆j‖2. For j ≥ 1,

‖h∆j‖2 ≤ k
1
2 ‖h∆j‖∞ ≤ k−

1
2 ‖h∆j−1‖1 this leads to

‖h(T∪∆0∪∆1)c‖2 ≤ Σj=2‖h∆j‖2 ≤
1√
k
‖h(T∪∆0)c‖1. (A.2)

Since x̂ = x+ h is the solution to (2.1) and both x̂ and x are feasible, we have

‖xT c‖1 ≥ ‖(x+ h)T c‖1

= ‖x∆0 + h∆0‖1 + ‖x(T∪∆0)c + h(T∪∆0)c‖1

≥ ‖x∆0‖1 − ‖h∆0‖1 + ‖h(T∪∆0)c‖1 − ‖x(T∪∆0)c‖1

So then we have

‖h(T∪∆0)c‖1 ≤ ‖h∆0‖1 + 2‖x(T∪∆0)c‖1 (A.3)
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First we bound ‖hT ‖2. To do that, observe that AhT = Ah− Σj=0Ah∆j and, therefore,

‖AhT ‖2 = 〈AhT , Ah〉 − 〈AhT ,Σj=0Ah∆j 〉

Applying Cauchy-Schwartz, it follows from (A.1) and the restricted isometry and orthogonality

property that

(1− δu)‖hT ‖22 ≤
√

1 + δu‖hT ‖2(2ε) + θu,k‖hT ‖2(Σj=0‖h∆j‖2)

‖hT ‖2 ≤
√

1 + δu
1− δu

(2ε) +
θu,k

1− δu
(Σj=0‖h∆j‖2) (A.4)

We can break the term Σj=0‖h∆j‖2 = ‖h∆0‖2+‖h∆1‖2+Σj=0‖h∆j‖2. Since ‖h∆0‖2+‖h∆1‖2 ≤
√

2‖h∆0∪∆1‖2, Using (A.2) we can conclude

Σj=0‖h∆j‖2 ≤
√

2‖h∆0∪∆1‖2 +
1√
k
‖h(T∪∆0)c‖1 (A.5)

Using (A.5) we can rewrite inequality (A.4) as,

‖hT ‖2 ≤
√

1 + δu
1− δu

(2ε) +
θu,k

1− δu
(
√

2‖h∆0∪∆1‖2 +
1√
k
‖h(T∪∆0)c‖1) (A.6)

In the next step we bound ‖h∆0∪∆1‖2. To do that we first make a bound for ‖hT ‖2. Since

both x and x̂ are feasible and by using the second constraint of problem (2.1) we have

‖hT ‖2 = ‖xT − x̂T ‖2 ≤ ‖xT − µT ‖2 + ‖x̂T − µT ‖2 ≤ 2γ (A.7)

Same as previous step we can write ‖Ah∆0∪∆1‖22 as

‖Ah∆0∪∆1‖22 = 〈Ah∆0∪∆1 , Ah〉 − 〈Ah∆0∪∆1 , AhT 〉−

〈Ah∆0∪∆1 , A(Σj=2h∆j )〉

Using Cauchy-Schwartz, (A.1) and the restricted isometry property we have

〈Ah∆0∪∆1 , Ah〉 ≤ 2
√

1 + δ2kε‖h∆0∪∆1‖2 (A.8)

Employing the restricted orthogonally property and (A.7) we get

〈Ah∆0∪∆1 , AhT 〉 ≤ 2θu,2kγ‖h∆0∪∆1‖2 (A.9)
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Using the restricted orthogonally property we get

〈Ah∆0∪∆1 , AΣj=2h∆j 〉 ≤ θk,2k‖h∆0∪∆1‖2(Σj=2‖h∆j‖2) (A.10)

Using (A.2) we can rewrite the above inequality as

〈Ah∆0∪∆1 , AΣj=2h∆j 〉 ≤
θk,2k√
k
|‖h∆0∪∆1‖2‖h(T∪∆0)c‖1 (A.11)

Combining (A.8), (A.9) and (A.11), we get

(1− δ2k)‖h∆0∪∆1‖22 ≤
√

1 + δ2k(2ε)‖h∆0∪∆1‖2

+ θu,2k‖hT ‖2‖h∆0∪∆1‖2 +
θk,2k√
k
|‖h∆0∪∆1‖2‖h(T∪∆0)c‖1 (A.12)

By simplifying the above inequality we have

‖h∆0∪∆1‖2 ≤ 2

√
1 + δ2k

1− δ2k
ε+ 2

θu,2k
1− δ2k

γ +
θk,2k√

k(1− δ2k)
‖h(T∪∆0)c‖1 (A.13)

By inequality (A.3) we can conclude

‖h(T∪∆0)c‖1 ≤
√
k‖h∆0‖2 + 2‖x(T∪∆0)c‖1

≤
√
k‖h∆0∪∆1‖2 + 2‖x(T∪∆0)c‖1 (A.14)

We use this inequality to replace it with ‖h(T∪∆0)c‖1 in inequality (A.13).

‖h∆0∪∆1‖2 ≤ 2

√
1 + δ2k

1− δ2k
ε+ 2

θu,2k
1− δ2k

γ

+
θk,2k

1− δ2k
‖h∆0∪∆1‖2 + 2

θk,2k√
k(1− δ2k)

‖x(T∪∆0)c‖1

Simplifying the above inequality lead to

‖h∆0∪∆1‖2 ≤ F̃1ε+ F̃2γ + F̃3e0(T,∆0) (A.15)

where

e0(T,∆) = 2
‖x(T∪∆)c‖1√

|∆|

F̃1 =
2
√

1 + δ2k

1− δ2k − θk,2k
, F̃2 =

2θu,2k
1− δ2k − θk,2k

F̃3 =
θk,2k

1− δ2k − θk,2k
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Here we use the previous bounds on ‖hT ‖2, ‖h∆0∪∆1‖2 and ‖h(T∪∆0∪∆1)c‖2 to bound ‖h‖2.

Using (A.6), (A.13) and (A.2) we have

‖h‖ ≤ ‖hT ‖2 + ‖h∆0∪∆1‖2 + ‖h(T∪∆0∪∆1)c‖2 ≤
√

1 + δu
1− δu

(2ε) +
θu,k

1− δu
(
√

2‖h∆0∪∆1‖2

+
1√
k
‖h(T∪∆0)c‖1) + ‖h∆0∪∆1‖2 +

1√
k
‖h(T∪∆0)c‖1

Using (A.14) and reordering the terms lead to

‖h‖ ≤ 2

√
1 + δu

1− δu
ε+ (2 +

(
√

2 + 1)θu,k
1− δu

)‖h∆0∪∆1‖2

+ 2(1 +
θu,k

1− δu
)
‖x(T∪∆)c‖1√

k

By substitution of (A.15) in above inequality we get

‖h‖ ≤ Cu,kε+Du,kγ + Eu,ke0(T,∆0)

where

Eu,k =
θk,2k

1− δ2k − θk,2k
(2 +

(
√

2 + 1)θu,k
1− δu

) + 2(1 +
θu,k

1− δu
)

A.2 Proof of Lemma 2

In this section we study minimizing the function L(b):

L(b) =
1

2
‖ y −Ab ‖2 +

1

2
λ ‖ bT − µ̂T ‖2 +γ ‖ bT c ‖1 (A.16)

We are searching the sufficient conditions under which L(b) has a unique minimizer in a way that

the unique minimizer is supported on set T ∪∆. For achieving this goal, first we characterize

L(b) when it is restericted to coefficient vectors supported on T ∪ ∆. Then we find the new

conditions that every pertubutotion away from the restricted minimizer increase the value of

the objective function.

We characterize L(b) over all coefficient vectors supported on T ∪∆ by the function F (b):

F (b) =
1

2
‖ y −AT∪∆bT∪∆ ‖2 +

1

2
λ ‖ bT − µ̂T ‖2 +γ ‖ bT c ‖1
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Since F (b) is a proper convex function then b∗ is a unique minimizer of F (b) if and only if

0 ∈ δF (b)
δb . Hence,

(A′T∪∆AT∪∆)b∗ − (A′T∪∆y) + λ

 IT,T 0T,∆

0∆,T 0∆,∆

 b∗ − λ
 µ̂T

0∆,1

 + γ

 0T,1

g∆

 = 0

b∗ = Q(∆)−1(A′T∪∆y + λµ̂T∪∆ − γgT∪∆) (A.17)

We should develop conditions which ensure that

L(b∗ + h)− L(b∗) ≥ 0 (A.18)

where h is a perturbation. Each perturbation admits a unique decomposition

h = u+ v

We expand (A.18) to obtain

L(b∗ + h)− L(b∗) =

1

2
(‖ y −A(b∗ + u)−Av ‖2 − ‖ y −Ab∗ ‖2) +

1

2
λ(‖ (b∗ + u)T − µ̂T ‖2 − ‖ (b∗)T − µ̂T ‖2)

+ γ(‖ (b∗ + u)T c + v ‖1 − ‖ (b∗)T c ‖1)

After some simplification, it gives

L(b∗+h)−L(b∗) = L(b∗+u)−L(b∗)+
1

2
‖Av‖22−Re〈y−Ab∗, Av〉+Re〈Au,Av〉+γ‖v‖1

Since b∗ is a unique minimizer over the set T ∪∆, therefore L(b∗+u)−L(b∗) ≥ 0. This implies

that for having L(b∗ + h)− L(b∗) ≥ 0 to be satisfied, it is suffucient to have

γ‖v‖1 − |〈y −Ab∗, Av〉| − |〈Au,Av〉| ≥ 0 (A.19)

Let’s focus on the second term on the left side of inequality (A.19). We can write v as

v = [Σω/∈T∪∆θωeω]‖v‖1

Where ‖θ‖1 = 1. By using the above equation we have

Av = [Σω/∈T∪∆θωAω]‖v‖1
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Using the triangle inequality and then Jensen’s inequality we obtain

|〈y −Ab∗, Av〉| ≤ [Σω/∈T∪∆|θω||〈y −Ab∗, Aw〉|]‖v‖1 ≤ max
ω/∈T∪∆

|〈y −Ab∗, Aω〉|.‖v‖1

To control the third term of inequality (A.19), we use the standard operator norm

|〈Au,Av〉| = |〈A∗Au, v〉| ≤ ‖A∗Au‖∞‖v‖1 ≤ δ‖A∗A‖∞,∞‖v‖1

Where we have used ‖u‖∞ ≤ δ. By applying these modification in second and third term of

inequality (A.19), we can rewrite (A.19) as

[γ − max
ω/∈T∪∆

|〈y −Ab∗, Aw〉| − δ‖A∗A‖∞,∞]‖v‖1 ≥ 0.

We can select δ as small as we want so the first two term of left-hand side is strictly positive

for each small perturbation h, We can conclude that for having L(b∗ + h) − L(b∗) ≥ 0, it is

sufficient to have

γ − |〈y −Ab∗, Ai〉| > 0 (A.20)

Here we expand |〈y −Ab∗, Ai〉| by subtituing b∗ from (A.17) in above inequality

|〈y−AT∪∆b∗, Ai〉| = |〈AT∪∆Q(∆)−1(λ

 xT − µ̂T

0∆

+γ

 0T

g∆

)+(I−AT∪∆Q(∆)−1A′T∪∆)w,Ai〉|

Using this we can rewrite (A.20) as

γ(1−|〈AT∪∆Q(∆)−1gT∪∆, Ai〉|) ≥ |〈AT∪∆Q(∆)−1λ(xT∪∆−µ̂T∪∆)+(I−AT∪∆Q(∆)−1A′T∪∆)w,Ai〉|

(A.21)

Next, we focus on the left parantese in inequaity (A.21) to bring it in a simpler form.

First, we rewrite AT∪∆Q(∆)−1gT∪∆ by subtituing AT∪∆, Q(∆)and gT∪∆ with their correspon-

dent matrix

AT∪∆Q(∆)−1gT∪∆ = (ATA∆)

 A′TAT + λIT A′TA∆

A′∆AT A′∆A∆


−1  0T,1

g∆


By using block matrix inversion and multiplying the second and third paranteses above we

have

AT∪∆Q(∆)−1gT∪∆ = (ATA∆)

 −(A′TAT + λIT )−1A′TA∆(A′∆MA∆)−1g∆

(A′∆MA∆)−1g∆
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By multiplying the two remained paranteses we obtain

AT∪∆Q(∆)−1gT∪∆ = −AT (A′TAT + λIT )−1A′TA∆(A′∆MA∆)−1g∆ +A∆(A′∆MA∆)−1g∆(A.22)

= MA∆(A′∆MA∆)−1g∆

We use (A.22) to bound the term |〈AT∪∆Q(∆)−1gT∪∆, Ai〉| in the left side of inequality (A.21)

|〈AT∪∆Q(∆)−1gT∪∆, Ai〉| = |〈(MA∆(A′∆MA∆)−1)′Ai, g∆〉| = |〈(A′∆MA∆)−1A′∆M
′Ai, g∆〉|

since ‖g∆‖∞ ≤ 1 we get

|〈AT∪∆Q(∆)−1gT∪∆, Ai〉| ≤ ‖(A′∆MA∆)−1A′∆MAi‖1

Therefore, we can conclude that the left parantese in inequality (A.21) is less than ERC(T,∆)

where

ERC(T,∆) = (1− max
i/∈T∪∆

‖(A′∆MA∆)−1A′∆MAi‖1)

Notice the fact that the (A.21) become worthless when the left parantese becomes less than

zero. So having ERC(T,∆) ≥ 0 ensures that (1− |〈AT∪∆Q(∆)−1gT∪∆, Ai〉|) is positiove.

Now we consider the right side of (A.21).First, notice that

y −Ac(∆) = AT∪∆Q(∆)−1λ(xT∪∆ − µ̂T∪∆) + (I −AT∪∆Q(∆)−1A′T∪∆)w

By the assumption that ‖Ai‖ ≤ 1 and using caushy-shwartz we have 〈y − Ac(∆, Ai〉 ≤ ‖y −

Ac(∆)‖.Hence, we can conclude that if

γ ≥ ‖(y −Ac(∆))‖2
ERC(T,∆)

(A.23)

then the inequality (A.21) will be held. Thus the problem (2.3) would have a unique solution

on the set T ∪∆ if

γ ≥ ‖(y −Ac(∆))‖2
ERC(T,∆)

and

ERC(T,∆) > 0
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We already showed the conditions which are necessary for having unique solution on the

set T ∪ ∆. In the rest of this section we are going to find the error bound, ‖x − x̂‖, for the

problem (2.3). From (A.17) we know the solution to the problem (2.3) is

b∗ = Q(∆)−1(A′T∪∆y + λµ̂T∪∆ − γgT∪∆)

Thus, we have

‖x− b∗‖ = ‖Q(∆)−1(γgT∪∆ + λ(xT∪∆ − µ̂T∪∆)−A′T∪∆w)‖

≤ ‖γQ(∆)−1gT∪∆‖+ ‖λQ(∆)−1(xT∪∆ − µ̂T∪∆)‖+ ‖Q(∆)−1A′T∪∆w‖ (A.24)

≤ γ‖Q(∆)−1gT∪∆‖+ λ‖Q(∆)−1‖‖(xT∪∆ − µ̂T∪∆)‖+ ‖Q(∆)−1‖‖A′T∪∆‖‖w‖

First we bound the term ‖Q(∆)−1gT∪∆‖2. By subtituing Q(∆) and gT∪∆ with their corre-

sponding matrix we obtain

Q(∆)−1gT∪∆ =

 A′TAT + λIT A′TA∆

A′∆AT A′∆A∆


−1  0T,1

g∆


Using block matrix inversion and multiplying the first and second paranteses above leads to

Q(∆)−1gT∪∆ =

 −(A′TAT + λIT )−1A′TA∆(A′∆MA∆)−1g∆

(A′∆MA∆)−1g∆


Hence, we have

‖Q(∆)−1gT∪∆‖ =
√
‖(A′TAT + λIT )−1A′TA∆(A′∆MA∆)−1g∆‖2

2
+ ‖(A′∆MA∆)−1g∆‖2

‖Q(∆)−1gT∪∆‖ ≤
√
‖(A′TAT + λIT )−1A′TA∆‖2 + 1‖(A′∆MA∆)−1‖‖g∆‖ (A.25)

Since ‖g∆‖ ≤
√
k, we have

‖Q(∆)−1gT∪∆‖ ≤
√
k
√
‖(A′TAT + λIT )−1A′TA∆‖2 + 1‖(A′∆MA∆)−1‖

Using (A.24) and (A.25), it gives

‖x− b∗‖2 ≤ γ
√
‖(A′TAT + λIT )−1A′TA∆‖2 + 1‖(A′∆MA∆)−1‖+ ‖λQ(∆)−1(xT∪∆ − µ̂T∪∆)‖

+‖Q(∆)−1A′T∪∆w‖
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A.3 Proof of Theorem 2

From the previous section we got the following conditions for the problem (2.3) to have a

unique solution

ERC(T,∆) ≥ 0

γ ≥ ‖(y −Ac(∆))‖2
ERC(T,∆)

Under these conditions, the error, ‖x− x̂‖2, of problem 2.3 will be

‖x− x̂‖2 ≤ γ
√
‖(A′TAT + λIT )−1A′TA∆‖2 + 1‖(A′∆MA∆)−1‖+ ‖λQ(∆)−1(xT∪∆ − µ̂T∪∆)‖

+‖Q(∆)−1A′T∪∆w‖

First, we obtain some conditions in terms of RIP and ROP constants that leads to ERC(T,∆) ≥

0.

ERC(T,∆) = (1− max
i/∈T∪∆

‖(A′∆MA∆)−1A′∆MAi‖1)

Let’s bound the term ‖(A′∆MA∆)−1A′∆MAi‖1. We know that for an arbitarily vector a we

have ‖a‖1 ≤
√
|a|‖a‖2, it gives

‖(A′∆MA∆)−1A′∆MAi‖1 ≤
√
k‖(A′∆MA∆)−1A′∆MAi‖2 ≤

√
k‖(A′∆MA∆)−1‖2‖A′∆MAi‖2

We can derive that ‖A′∆MAi‖2 ≤ θk,1+
θu,kθu,1
1−δu+λ and if λ ≥ δu+

θ2
u,k

1−δk −1 then ‖(A′∆MA∆)−1‖2 ≤

1− δk −
θ2
u,k

1−δu+λ . Applying these relations, it gives

‖(A′∆MA∆)−1A′∆MAi‖1 ≤
√
k
θk,1 +

θu,kθu,1
1−δu+λ

1− δk −
θ2
u,k

1−δu+λ

In other word

ERC(T,∆) ≥ H1(u, k, λ)

where

H1(u, k, λ) = 1−
√
|k|

θk,1 +
θu,kθu,1
1−δu+λ

1− δk −
θ2
u,k

1−δu+λ

(A.26)
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It means, for having ERC(T,∆) ≥ 0 it is sufficient to have H1(|T |, |∆|, λ) ≥ 0. Now let’s

find the conditions that makes H1(|T |, |∆|, λ) ≥ 0.

1−
√
k

θk,1 +
θu,kθu,1
1−δu+λ)

1− δk −
θ2
u,k

(1−δu+λ)

≥ 0

Multiplying both sides with 1− δk −
θ2
u,k

(1−δu+λ) leads to

1− δk −
√
kθk,1 −

θ2
u,k +

√
kθu,kθu,1

1− δu + λ
≥ 0

If 1− δk −
√
kθk,1 > 0 we need

1− δu + λ ≥
θ2
u,k +

√
kθu,kθu,1

1− δk −
√
kθk,1

λ ≥ −1 + δu +
θ2
u,k +

√
kθu,kθu,1

1− δk −
√
kθk,1

Thus, H1(u, k, λ) > 0 holds when

• 1− δk −
√
kθk,1

• λ ≥ g2(u, k) where

g2(u, k) = −1 + δu +
θ2
u,k +

√
kθu,kθu,1

1− δk −
√
kθk,1

(A.27)

In the next step, our aim is to bring the inequality (A.23) in terms of RIP and ROP

constants. Notice that

c(∆) = Q(∆)−1(A′T∪∆y + λµ̂T∪∆) (A.28)

Here we are going to find an upper bound for ‖(y −Ac(∆))‖2

‖(y −Ac(∆))‖2 ≤ λ‖A′iAT∪∆‖‖Q(∆)−1‖‖xT∪∆ − µ̂T∪∆‖+ ‖(A′i −A′iAT∪∆Q(∆)−1A′T∪∆)w)‖

(A.29)
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In above inequality we have ‖Q(∆)−1‖2. Since ‖Q(∆)−1‖2 ≤ (λmin(Q(∆)))−1, we calculate the

λmin(Q(∆)) in term of RIP constants.

λmin(Q(∆)) = (A.30)

λmin(

 A′TAT + λIT A′TA∆

A′∆AT A′∆A∆

) =

λmin(

 A′TAT + λIT 0

0 A′∆A∆

 +

 0 A′TA∆

A′∆AT 0

) ≥

λmin(

 A′TAT + λIT 0

0 A′∆A∆

) + λmin(

 0 A′TA∆

A′∆AT 0

)

We bound the first and the last term in above inequality in the following corollaries.

Corollary 1. min(1− δu + λ, 1− δk) ≤ λmin(

 A′TAT + λIT 0

0 A′∆A∆

)

Corollary 2.

−θu,k ≤ λmin(

 0 A′TA∆

A′∆AT 0

)

Proof:

λmin(

 0 A′TA∆

A′∆AT 0

) = min
‖x1‖2+‖x2‖2=1

[x1x2]

 0 A′TA∆

A′∆AT 0

)

 x′1

x′2

 (A.31)

(A.32)

= min
‖x1‖2+‖x2‖2=1

x1A
′
TA∆x

′
2 + x2A

′
∆ATx

′
1 = 2x1A

′
TA∆x

′
2 ≥ −2θu,k‖x1‖‖x2‖

Since ‖x1‖2 +‖x2‖2 = 1 then we can conclude that ‖x1‖‖x2‖ is maximum when ‖x1‖ = ‖x2‖ =

1√
2

so we have ‖x1‖‖x2‖ = 1
2 . By using corollary 2 and corollary 1 and the assumption that

min(1− δu + λ, 1− δk)− θu,k > 0, we obtain

‖Q(∆)−1‖ ≤ 1

min(1− δu + λ, 1− δk)− θu,k
(A.33)
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Notice that for having min(1−δu+λ, 1−δk)−θu,k > 0 we should at least have 1−δk−θu,k > 0.

Employing (A.33), we can rewrite (A.29) as follow

‖y −Ac(∆)‖ ≤ λ
θ(u+k,1)

min(1− δu + λ, 1− δk)− θu,k)
‖xT∪∆ − µ̂T∪∆‖+ (A.34)

(1 +
θu+k,1(

√
1 + δu+k)

(min(1− δu + λ, 1− δk)− θu,k)
)ρ

Using (A.34) and (A.26), we can rewrite (A.23) as

γ ≥ H2(u, k, ‖xT∪S − µ̂T∪∆‖) (A.35)

where

H2(u, k) =
λ

θ(u+k,1)

min(1−δu+λ,1−δk)−θu,k)‖xT∪∆ − µ̂T∪∆‖+ (1 +
θu+k,1(

√
1+δu+k)

(min(1−δu+λ,1−δk)−θu,k))ε

1−
√
k
θk,1+

θu,kθu,1
1−δu+λ

)

1−δk−
θ2
u,k

(1−δu+λ)

(A.36)

We have already found the conditions in terms of RIP and ROP constants which the unique

solution for the problem (2.3) is obtained. We summarize the conditions which we have already

obtained as follow

• 1− δk −
√
kθk,1

• λ ≥ g2(u, k)

• γ ≥ H2(u, k, ‖xT∪S − µ̂T∪∆‖) where g2 and H2 has been defined in and .

In the rest of this section we are going to get an explicit form for error bound.From the 2 we

got the following error bound for the problem (2.3)

‖x− x̂‖2 ≤ γ
√
|∆|

√
‖(A′TAT + λIT )−1A′TA∆‖2 + 1‖(A′∆MA∆)−1‖+ ‖λQ(∆)−1(xT∪∆ − µ̂T∪∆‖

+‖Q(∆)−1A′T∪∆w‖ (A.37)

We have √
‖(A′TAT + λIT )−1A′TA∆‖2 + 1 ≤

√
θ2
u,k

(1− δu + λ)2
+ 1

and If λ ≥ δu − 1 +
θ2
u,k

1−δk

‖(A′∆MA∆)−1‖ ≤ 1

1− δk −
θ2
u,k

1−δu+λ
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So we can conclude

√
|∆|

√
‖(A′TAT + λIT )−1A′TA∆‖2 + 1‖(A′∆MA∆)−1‖ ≤

√
k

√
θ2
u,k

(1− δu + λ)2
+ 1· 1

1− δk −
θ2
u,k

1−δu+λ

(A.38)

We saw that if λ ≥ δu− 1 +
θ2
u,k

1−δk and 1− δk− θu,k ≥ 0 holds, then we can apply (A.33) and

(A.38) to rewrite (A.37) as

‖x− x̂‖ ≤ γf1(u, k, λ) + f2(u, k, λ)‖xT∪∆ − x̂T∪∆‖+ f3(u, k, λ)‖w‖2

where

f1(u, k, λ) =
√
k

√
θ2
u,k

(1− δu + λ)2
+ 1 · 1

1− δk −
θ2
u,k

1−δu+λ

(A.39)

f2(u, k, λ) =
λ

min(1− δu + λ, 1− δk)− θu,k
(A.40)

f3(u, k, λ) =

√
1 + δu+k

min(1− δu + λ, 1− δk)− θu,k
(A.41)

A.4 Proof of Theorem 4

First, recall that ut := |Tt| and kt := |∆t|. The proof follows using induction. Using

condition 5 of the theorem, the claim holds for t = 0. This proves the base case. For the

induction step, assume that the claim holds at t− 1, i.e. |Tt−1| ≤ S0,|∆t−1| ≤ S1 and ‖xt−1 −

x̂t−1‖ ≤ CS0,S1ε+DS0,S1γ. Using these assumptions we prove that the claim holds at t.

First, notice that condition 2 of theorem states that γ = CS0,S1ε + DS0,S1γ +
√

2dSar. We

claim that under conditions 1 and 2 of theorem we have ‖xt − x̂t−1‖ ≤ γ. This is true since by

Proposition 2 and the assumption of induction, we have ‖xt−x̂t−1‖ ≤ ‖xt−1−x̂t−1‖+
√

2dSar ≤

CS0,S1ε+DS0,S1γ +
√

2dSar = γ. Note that DS0,S1 < 1 is necessary for having condition 2. It

can be shown that DS0,S1 < 1 is equivalent to 1− δ2S1 − θS1,2S1 −2(2 +
(
√

2+1)θS0,S1
1−δS0

)θS0,2S1 > 0.

This holds since condition 1 holds.

Now for the rest of proof if we show that ut ≤ S0 and kt ≤ S1, then Theorem 1 can

be applied and we are done. That is because by condition 1, we can show that δut < 1,

1 − δ2kt − θkt,2kt > 0 which are the first two requirements for applying Theorem 1. Condition
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2 and the above discussion ensures that the third requirement of Theorem 1 holds.

First, notice that employing Proposition 1 and condition 3 and 4 of the theorem and by

the assumption that ‖xt−1− x̂t−1‖ ≤ CS0,S1ε+DS0,S1γ, we can conclude that at time t− 1, all

the elements greater or equal to d0r will be get detected n the support update step, i.e. when

computing T̃t−1. Thus, the missed set, |∆̃t−1| ≤ (2d0 − 2)Sa. Also, notice that by Proposition

2 and the assumption of induction we can conclude that at time t − 1 no zero value element

of xt−1 will be get detected as an element of T̃t−1, in other word ∆̃e,t−1 = 0. From Algorithm

1 we remember that Tt = T̃t−1 and ut = |T̃t−1|. Since T̃t−1 = Nt−1 ∪ ∆̃e,t−1 \ ∆̃t−1, we have

ut = |T̃t−1| ≤ |Nt−1| + |∆̃e,t−1|. We know that |Nt−1| = S0 and |∆e,t| = 0 . Hence, it implies

that ut ≤ S0.

Also, ∆t = Nt ∩ T̃ ct−1 = (Nt−1 ∪At)∩Rct ∩ T̃ ct−1 ⊆ (∆̃t−1 ∪At)∩Rct . Here we have used the

facts that Nt = (Nt−1∪At)∩Rct and ∆̃t−1 = Nt−1∩ T̃ ct−1. So we have ∆t ⊆ (∆̃t−1∪At)∩Rct ⊆

(St−1(d0) ∪At) ∩Rct . Therefore, kt = |∆t| ≤ |St−1(d0)|+ |At| − |Rt| = (2d0 − 2)Sa = S1.
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